Regulation of Bidirectional Melanosome Transport by Organelle Bound MAP Kinase

نویسندگان

  • Sean W. Deacon
  • Alexandra Nascimento
  • Anna S. Serpinskaya
  • Vladimir I. Gelfand
چکیده

Regulation of intracellular transport plays a role in a number of processes, including mitosis, determination of cell polarity, and neuronal growth. In Xenopus melanophores, transport of melanosomes toward the cell center is triggered by melatonin, whereas their dispersion throughout the cytoplasm is triggered by melanocyte-stimulating hormone (MSH), with both of these processes mediated by cAMP-dependent protein kinase A (PKA) activity [1, 2]. Recently, the ERK (extracellular signal-regulated kinase) pathway has been implicated in regulating organelle transport and signaling downstream of melatonin receptor [3, 4]. Here, we directly demonstrate that melanosome transport is regulated by ERK signaling. Inhibition of ERK signaling by the MEK (MAPK/ERK kinase) inhibitor U0126 blocks bidirectional melanosome transport along microtubules, and stimulation of ERK by constitutively active MEK1/2 stimulates transport. These effects are specific because perturbation of ERK signaling has no effect on the movement of lysosomes, organelles related to melanosomes [5]. Biochemical analysis demonstrates that MEK and ERK are present on melanosomes and transiently activated by melatonin. Furthermore, this activation correlates with an increase in melanosome transport. Finally, direct inhibition of PKA transiently activates ERK, demonstrating that ERK acts downstream of PKA. We propose that signaling of organelle bound ERK is a key pathway that regulates bidirectional, microtubule-based melanosome transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle.

The peripheral accumulation of melanosomes characteristic of wild-type mouse melanocytes is driven by a cooperative process involving long-range, bidirectional, microtubule-dependent movements coupled to capture and local movement in the actin-rich periphery by myosin Va, the product of the dilute locus. Genetic evidence suggests that Rab27a, the product of the ashen locus, functions with myosi...

متن کامل

Regulation of Organelle Movement in Melanophores by Protein Kinase A (PKA), Protein Kinase C (PKC), and Protein Phosphatase 2A (PP2A)

We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of p...

متن کامل

Rab32 Regulates Melanosome Transport in Xenopus Melanophores by Protein Kinase A Recruitment

Intracellular transport is essential for cytoplasm organization, but mechanisms regulating transport are mostly unknown. In Xenopus melanophores, melanosome transport is regulated by cAMP-dependent protein kinase A (PKA). Melanosome aggregation is triggered by melatonin, whereas dispersion is induced by melanocyte-stimulating hormone (MSH). The action of hormones is mediated by cAMP: High cAMP ...

متن کامل

Myosin cooperates with microtubule motors during organelle transport in melanophores

Melanophores offer an outstanding system for the study of intracellular motility. These cells aggregate their pigment-filled melanosomes to the cell center or disperse them throughout the cytoplasm in response to hormonal modulation of intracellular cyclic AMP levels in order to effect color changes in lower vertebrates [1]. Previous work from our laboratory demonstrated a role for microtubule-...

متن کامل

Semi-Automated Analysis of Organelle Movement and Membrane Content: Understanding Rab-Motor Complex Transport Function

Organelle motility is an essential cellular function that is regulated by molecular motors, and their adaptors and activators. Here we established a new method that allows more direct investigation of the function of these peripheral membrane proteins in organelle motility than is possible by analysis of the organelle movement alone. This method uses multi-channel time-lapse microscopy to recor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005